प्रश्न-पत्र कोड Q.P. Code

430/4/3

रोल नं. Roll No.

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

नोट

- (I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 15 हैं।
- (II) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 38 प्रश्न हैं।
- (III) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- (IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथास्थान पर प्रश्न का क्रमांक अवश्य लिखें।
- (V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।

NOTE

- (I) Please check that this question paper contains 15 printed pages.
- (II) Please check that this question paper contains **38** questions.
- (III) Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- (IV) Please write down the Serial Number of the question in the answer-book at the given place before attempting it.
- (V) 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answerbook during this period.

गणित (बुनियादी) MATHEMATICS (BASIC)

निर्धारित समय : 3 घण्टे Time allowed : 3 hours अधिकतम अंक : 80 Maximum Marks : 80

430/4/3 1 | P a g e

सामान्य निर्देश :

निम्नलिखित निर्देशों को बहुत सावधानी से पढ़िए और उनका पालन कीजिए :

- इस प्रश्न-पत्र में 38 प्रश्न हैं। सभी प्रश्न अनिवार्य हैं।
- 2. प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ** तथा **ड**।
- 3. खण्ड क में प्रश्न संख्या 1 से 18 तक बहविकल्पीय तथा प्रश्न संख्या 19 एवं 20 अभिकथन एवं तर्क आधारित 1 अंक के प्रश्न हैं।
- 4. खण्ड ख में प्रश्न संख्या 21 से 25 तक अति लघु-उत्तरीय (VSA) प्रकार के 2 अंकों के प्रश्न हैं।
- 5. खण्ड ग में प्रश्न संख्या 26 से 31 तक लघ्-उत्तरीय (SA) प्रकार के 3 अंकों के प्रश्न हैं।
- 6. खण्ड घ में प्रश्न संख्या 32 से 35 तक दीर्घ-उत्तरीय (LA) प्रकार के 5 अंकों के प्रश्न हैं।
- 7. खण्ड इ में प्रश्न संख्या 36 से 38 स्रोत/प्रकरण इकाई आधारित 4 अंकों के प्रश्न हैं। आंतरिक विकल्प 2 अंकों के प्रश्न में दिया गया है।
- 8. प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड ख के 2 प्रश्नों में, खण्ड **ग** के 2 प्रश्नों में, खण्ड घ के 2 प्रश्नों में तथा खण्ड ड के 2 अंकों के 3 प्रश्नों में आंतरिक विकल्प का प्रावधान दिया गया है।
- 9. जहां आवश्यक हो, स्वच्छ आकृतियाँ बनाएं। यदि आवश्यक हो तो $\pi = 22/7$ लें।
- 10. कैलकुलेटर का उपयोग **वर्जित** है।

खण्ड - क $20 \times 1 = 20$

प्रश्न संख्या 1 से 20 तक बहुविकल्पीय प्रश्न हैं तथा प्रत्येक प्रश्न 1 अंक का है।

- यदि $\sin A = \frac{2}{3}$ है, तो $\cos A$ का मान है : 1

 - (a) $\frac{3}{2}$ (b) $\frac{\sqrt{5}}{3}$ (c) $\frac{1}{3}$ (d) $\frac{1}{\sqrt{3}}$
- $7~\mathrm{cm}$ आधार त्रिज्या वाले शंकु का वक्र पृष्ठीय क्षेत्रफल $550~\mathrm{cm}^2$ है। शंकु की तिर्यक ऊँचाई है :
 - (a) 25 cm
- (b) 14 cm
- (c) 20 cm
- (d) 24 cm
- m का वह मान जिसके लिये रेखायें 14x + my = 20 तथा -3x + 2y = 16 समान्तर हैं, 3.

- (a) $-\frac{3}{14}$ (b) $-\frac{7}{3}$ (c) $-\frac{28}{3}$ (d) $-\frac{3}{28}$
- यदि α , β बहुपद $3x^2+14x-5$ के शून्यक हैं, तो $3\left(\frac{\alpha+\beta}{\alpha\beta}\right)$ का मान है : 1

- (a) $\frac{14}{5}$ (b) $\frac{42}{5}$ (c) $-\frac{14}{5}$ (d) $-\frac{42}{5}$

1

General Instructions:

Read the following instructions carefully and follow them:

- 1. This question paper contains **38** questions. **All** questions are compulsory.
- 2. Question paper is divided into FIVE sections SECTION A, B, C, D and E.
- 3. In **section** A, question number 1 to 18 are multiple choice questions (MCQs) and question number 19 and 20 are Assertion – Reason based questions of 1 mark each.
- 4. In section B, question number 21 to 25 are very short answer (VSA) type questions of 2 marks each.
- 5. In section C, question number 26 to 31 are short answer (SA) type questions carrying 3 marks each.
- 6. In **section D**, question number 32 to 35 are long answer (LA) type questions carrying 5 marks each.
- 7. In section E, question number 36 to 38 are case-based integrated units of assessment questions carrying 4 marks each. Internal choice is provided in 2 marks question in each case study.
- 8. There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section D and 3 questions of 2 marks in Section E.
- 9. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.
- 10. Use of calculators is **NOT allowed**.

SECTION - A $20 \times 1 = 20$

Question Nos. 1 to 20 are multiple choice questions of 1 mark each.

If $\sin A = \frac{2}{3}$, then $\cos A$ is equal to : 1

(a)
$$\frac{3}{2}$$
 (b) $\frac{\sqrt{5}}{3}$ (c) $\frac{1}{3}$

(b)
$$\frac{\sqrt{5}}{3}$$

(c)
$$\frac{1}{3}$$

(d)
$$\frac{1}{\sqrt{3}}$$

The curved surface area of a cone with base radius 7 cm, is 550 cm². The 2. slant height of the cone is:

1

- (a) 25 cm
- (b) 14 cm
- (c) 20 cm
- (d) 24 cm

3. The value of m for which lines 14x + my = 20 and -3x + 2y = 16 are

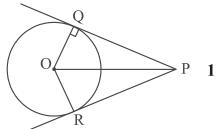
1

1

(a)
$$-\frac{3}{14}$$

(a)
$$-\frac{3}{14}$$
 (b) $-\frac{7}{3}$ (c) $-\frac{28}{3}$ (d) $-\frac{3}{28}$

If α , β are zeroes of the polynomial $3x^2 + 14x - 5$, then the value of


$$3\left(\frac{\alpha+\beta}{\alpha\beta}\right)$$
 is:

(a)
$$\frac{14}{5}$$

(c)
$$-\frac{14}{5}$$

(a)
$$\frac{14}{5}$$
 (b) $\frac{42}{5}$ (c) $-\frac{14}{5}$ (d) $-\frac{42}{5}$

PQ तथा PR, त्रिज्या 3 cm तथा केन्द्र O वाले, वृत्त पर खींची गयी दो स्पर्श रेखायें हैं। यदि प्रत्येक स्पर्श रेखा की लम्बाई 4 cm है तो त्रिभुज OQP का परिमाप है :

- (a) 5 cm
- (b) 12 cm
- (c) 9 cm
- (d) 8 cm
- दो संख्याओं का LCM 3600 है। निम्न में से कौन-सी संख्या इनका HCF नहीं हो सकती?
- 1

- (a) 600
- (b) 400
- (c) 500
- (d) 150
- बिन्दुओं (-6, 9) तथा (2, 7) के बीच की दूरी है :

1

- (a) $2\sqrt{17}$
- (b) $4\sqrt{17}$ (c) $2\sqrt{5}$
- (d) $2\sqrt{15}$
- यदि $\sec\theta \tan\theta = 2$ है, तो $\sec\theta + \tan\theta$ का मान है : 8.

1

- (b) $\sqrt{2}$ (c) $\frac{1}{\sqrt{2}}$
- (d) 2
- तीन सिक्कों को एक साथ उछाला जाता है। इसकी प्रायिकता कि सिर्फ एक सिक्का पट (T) दर्शाये, है :

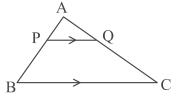
1

- (a) $\frac{1}{2}$ (b) $\frac{3}{8}$ (c) $\frac{7}{8}$

- **10.** बहुपद $p(x) = kx^2 9x + 3$ का एक शून्यक $\left(-\frac{3}{2}\right)$ है। k का मान है :

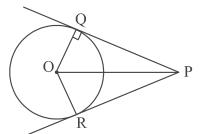
1

- (a) $\frac{22}{3}$ (b) $-\frac{14}{3}$ (c) $\frac{14}{3}$ (d) $-\frac{22}{3}$
- 11. समान आयतन वाले दो लंबवृत्तीय बेलन की ऊँचाइयों का अनुपात 1:2 है। इनकी त्रिज्याओं का अनुपात है :


1

- (a) $\sqrt{2}:1$
- (b) 1:2
- (c) 1:4
- (d) $1:\sqrt{2}$
- 12. यदि $\sqrt{2}\sin\theta = 1$ है, तो $\cot\theta \times \csc\theta$ बराबर है :

1


- (a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{2\sqrt{2}}$
- (c) $\sqrt{2}$
- (d) $\frac{1}{2}$

13. △ ABC में PQ || BC है। दिया गया है कि AP = 2.4 cm, PB = 3.6 cm तथा BC = 5.4 cmहै। PQ की लम्बाई है :

- (a) 2.7 cm
- (b) 1.8 cm
- (c) 3.6 cm
- (d) 2.16 cm

PQ and PR are tangents to the circle 5. of radius 3 cm and centre O. If length of each tangent is 4 cm, then perimeter of \triangle OQP is :

(a) 5 cm

(b) 12 cm

(c) 9 cm

(d) 8 cm

The LCM of two numbers is 3600. Which of the following can not be **6.** their HCF?

(a) 600

(b) 400

(c) 500

(d) 150

7. The distance between the points (-6, 9) and (2, 7) is:

(a) $2\sqrt{17}$

(b) $4\sqrt{17}$

(c) $2\sqrt{5}$

(d) $2\sqrt{15}$

If $\sec \theta - \tan \theta = 2$, then $\sec \theta + \tan \theta$ is equal to : 8.

1

1

1

1

(b) $\sqrt{2}$ (c) $\frac{1}{\sqrt{2}}$

(d) 2

9. Three coins are tossed together. The probability that only one coin shows

1

(b) $\frac{3}{8}$ (c) $\frac{7}{8}$ (d) 1

10. One of the zeroes of the polynomial $p(x) = kx^2 - 9x + 3$ is $\left(-\frac{3}{2}\right)$. The value of k is:

1

(b) $-\frac{14}{3}$ (c) $\frac{14}{3}$ (d) $-\frac{22}{3}$

Two right circular cylinders of equal volumes have their heights in the ratio 1:2. The ratio of their radii is:

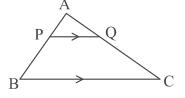
1

(a) $\sqrt{2}:1$

(b) 1:2

(c) 1:4

(d) $1:\sqrt{2}$


12. If $\sqrt{2}\sin\theta = 1$, then $\cot\theta \times \csc\theta$ is equal to :

1

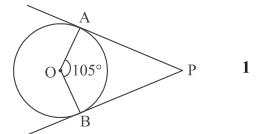
(a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{2\sqrt{2}}$ (c) $\sqrt{2}$

(d) $\frac{1}{2}$

13. In \triangle ABC, PQ || BC. It is given that AP = 2.4 cm, PB = 3.6 cm and BC = 5.4 cm. PQ is equal to:

1

(a) 2.7 cm


(b) 1.8 cm

(c) 3.6 cm

(d) 2.16 cm

14. PA तथा PB, केन्द्र O वाले वृत्त पर खींची गयी दो स्पर्श रेखायें हैं। यदि ∠AOB = 105° है तो $\angle OAP + \angle APB$ का मान है :

- (a) 75°
- (b) 175°
- (c) 180°
- (d) 165°
- **15.** एक A.P. में $a_n a_{n-4} = 32$ है। इसका सार्वअन्तर है :

1

- (b) 8
- (d) 4
- 16. 7 cm त्रिज्या वाले वृत्त के एक चतुर्थांश का परिमाप है :

1

- (a) 18 cm
- (b) 11 cm
- (c) 22 cm
- (d) 25 cm
- 17. 52 पत्तों वाली अच्छी प्रकार से फेंटी गयी ताशों की गड्डी में से एक पत्ता यादृच्छया निकाला गया। इसकी प्रायिकता कि निकाले गये पत्ते पर अंकित संख्या '9' है, है :

1

- (b) $\frac{4}{13}$ (c) $\frac{1}{52}$
- **18.** A.P.: $10\sqrt{2}$, $6\sqrt{2}$, $2\sqrt{2}$,.... का 20वां पद है :

1

- (a) $-76+10\sqrt{2}$ (b) $-62\sqrt{2}$ (c) $-66\sqrt{2}$ (d) $86\sqrt{2}$

निर्देश :

प्रश्न संख्या 19 और 20 अभिकथन एवं तर्क आधारित प्रश्न हैं। दो कथन दिए गए हैं जिनमें एक को अभिकथन (A) तथा दसरे को तर्क (R) द्वारा अंकित किया गया है। इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (a), (b), (c) और (d) में से चुनकर दीजिए :

- (a) अभिकथन (A) और तर्क (R) दोनों सही हैं और तर्क (R), अभिकथन (A) की सही व्याख्या करता है।
- (b) अभिकथन (A) और तर्क (R) दोनों सही हैं, परन्तु तर्क (R), अभिकथन (A) की सही व्याख्या *नहीं* करता है।
- (c) अभिकथन (A) सही है, परन्तु तर्क (R) ग़लत है।
- (d) अभिकथन (A) ग़लत है, परन्तु तर्क (R) सही है।
- 19. अभिकथन (A): एक कक्षा परीक्षा में विद्यार्थियों के माध्यक प्राप्तांक 16 हैं। इसका अर्थ है आधी कक्षा के प्राप्तांक 16 से कम हैं।

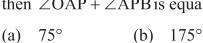
तर्क (R):

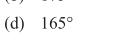
माध्यक पूरे वितरण को दो बराबर भागों में बाँटता है।

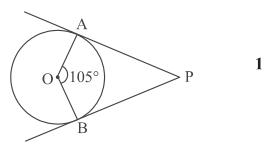
1

20. अभिकथन (A) : यदि घटना E के घटित होने की प्रायिकता $P(E) = \frac{1}{999}$ है,

तो $P(\overline{E}) = 0.001$ है।


तर्क (R):


 $P(E) + P(\overline{E}) = 1$


(c) 180°

(a) 18 cm

14. PA and PB are tangents to a circle with centre O. If $\angle AOB = 105^{\circ}$ then $\angle OAP + \angle APB$ is equal to :

15. In an A.P., $a_n - a_{n-4} = 32$. Its common difference is :

(d) 4

1

1

1

The perimeter of a quadrant of a circle of radius 7 cm, is:

(d) 25 cm

(b) 11 cm

(b) 8

17. A card is drawn at random from a well shuffled deck of 52 playing cards. The probability that drawn card shows number '9' is:

(c) 22 cm

(b) $\frac{4}{13}$ (c) $\frac{1}{52}$ (d) $\frac{1}{13}$ (a) $\frac{1}{26}$

18. The 20th term of the A.P.: $10\sqrt{2}$, $6\sqrt{2}$, $2\sqrt{2}$,.... is: 1 (a) $-76+10\sqrt{2}$ (b) $-62\sqrt{2}$ (c) $-66\sqrt{2}$ (d) $86\sqrt{2}$

Directions:

Question numbers 19 and 20 are Assertion and Reason based questions. Two statements are given, one labelled as Assertion (A) and the other is labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below:

- (a) Both, Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- (b) Both, Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of Assertion (A).
- Assertion (A) is true, but Reason (R) is false.
- Assertion (A) is false, but Reason (R) is true.
- **19.** Assertion (A): Median marks of students in a class test is 16. It means half of the class got marks less than 16.

Reason (R): Median divides the distribution in two equal parts. 1

20. Assertion (A): If E is an event such that $P(E) = \frac{1}{999}$, then $P(\overline{E}) = 0.001$.

Reason (R): $P(E) + P(\overline{E}) = 1$ 1

P.T.O.

• • •

खण्ड - ख

प्रश्न संख्या 21 से 25 तक अति लघु-उत्तर वाले प्रश्न हैं, जिनमें प्रत्येक 2 अंक का है।

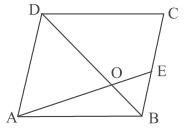
21. (A) सिद्ध कीजिये कि किसी बाह्य बिंदु से किसी वृत्त पर खींची गई स्पर्श रेखाओं के बीच का कोण स्पर्श बिंदुओं को मिलाने वाले रेखाखंड द्वारा केन्द्र पर अंतरित कोण का संपूरक होता है।

2

अथवा

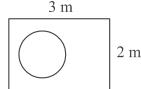
(B) सिद्ध कीजिये कि किसी वृत्त के किसी व्यास के सिरों पर खींची गई स्पर्श रेखायें समान्तर होती हैं।

2


22. बिन्दुओं (2, -5) तथा (5, 3) को जोड़ने वाले रेखाखण्ड को x-अक्ष एक निश्चित अनुपात में विभाजित करती है। वह अनुपात तथा x-अक्ष पर प्रतिच्छेदी बिन्दु के निर्देशांक ज्ञात कीजिये।

2

23. दर्शाइये कि किसी प्राकृत संख्या n के लिये संख्या 45^n अंक 0 पर समाप्त नहीं हो सकती। उस अभाज्य संख्या 'a' का मान बताइये जिसे 45^n से गुणा करने पर गुणनफल, अंक 0 पर समाप्त हो।


2

24. समान्तर चतुर्भुज ABCD के विकर्ण BD को रेखाखण्ड AE, 1:2 अनुपात में विभाजित करता है। यदि BE = 1.8 cm है तो AD की लम्बाई ज्ञात कीजिये।

2

25. (A) एक सिक्के को आकृति में दिखाये गये आयताकार क्षेत्र में यादृच्छया रूप से गिराया जाता है। इसकी क्या प्रायिकता है कि वह सिक्का 0.7 m त्रिज्या वाले वृत्त में गिरेगा?

अथवा

(B) एक पासे को दो बार फेंका गया। इसकी क्या प्रायिकता है कि (i) दो प्राप्त संख्याओं के बीच का अंतर 3 हो। (ii) दो प्राप्त संख्याओं का योग 8 हो।

2

2

खण्ड - ग

प्रश्न संख्या 26 से 31 तक लघु-उत्तर वाले प्रश्न हैं, जिनमें प्रत्येक 3 अंक का है।

26. सिद्ध कीजिये कि वृत्त के परिगत बने चतुर्भुज की आमने-सामने की भुजायें केन्द्र पर संपूरक कोण अंतरित करती हैं।

3

430/4/3

8 | P a g e

. . .

SECTION - B

Question Nos. 21 to 25 are very short answer questions of 2 marks each.

21. (A) Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the centre.

2

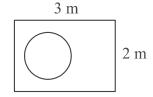
OR

(B) Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

2

22. Find the ratio in which the segment joining the points (2, -5) and (5, 3) is divided by x-axis. Also, find coordinates of the point on x-axis.

2


23. Show that 45^n can not end with the digit 0, n being a natural number. Write the prime number 'a' which on multiplying with 45^n makes the product end with the digit 0.

2

24. The diagonal BD of parallelogram ABCD is divided by segment AE in the ratio 1:2. If BE = 1.8 cm, find the length of AD.

2

25. (A) A coin is dropped at random on the rectangular region shown in the figure. What is the probability that it will land inside the circle with radius 0.7 m?

O

2

OR

(B) A die is thrown twice. What is the probability that (i) difference between two numbers obtained is 3 ? (ii) sum of the numbers obtained is 8 ?

2

SECTION - C

Question Nos. 26 to 31 are short answer questions of 3 marks each.

26. Prove that the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

27. (A) यदि बिंदु A(-5, y), B(2, -2), C(8, 4) तथा D(x, 5) एक समान्तर चतुर्भुज ABCD के शीर्ष इसी क्रम में हों, तो x और y का मान ज्ञात कीजिये। इस समान्तर चत्रभ्ज की भ्जाओं की लम्बाइयां ज्ञात कीजिये।

3

(B) बिन्दु A(6, -3), B(0, 5) तथा C(-2, 1) $\triangle ABC$ के शीर्ष बिन्दु हैं। बिन्दु P(3, 1)तथा बिन्दु Q(2,-1) क्रमशः भुजा AB तथा AC पर स्थित हैं। जाँच कीजिये कि क्या $\frac{AP}{PB} = \frac{AQ}{OC}$ है।

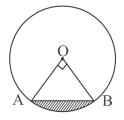
3

28. बहुपद $p(x) = 9x^2 - 6x - 35$ के शून्यक ज्ञात कीजिये तथा इसके गुणांक एवं शून्यकों के बीच के संबंध को सत्यापित कीजिये।

3

29. सिद्ध कीजिये कि $\sqrt{2}$ एक अपरिमेय संख्या है।

3


30. (A) समान्तर श्रेणी $7, 10\frac{1}{2}, 14, \dots$ 84 का योग ज्ञात कीजिये।

3

(B) यदि किसी A.P. के प्रथम n पदों का योग $S_n = \frac{n}{2}(2n+8)$ है तो इसका प्रथम पद तथा सार्वअन्तर ज्ञात कीजिये। इसके पश्चात् 15वां पद ज्ञात कीजिये।

3

14 cm त्रिज्या वाले वृत्त की जीवा केन्द्र पर 90° का कोण अंतरित करती है। छायांकित भाग का परिमाप ज्ञात कीजिये। $(\sqrt{2} = 1.41 \text{ लीजिय})$

3

खण्ड - घ

प्रश्न संख्या 32 से 35 तक दीर्घ-उत्तर वाले प्रश्न हैं, जिनमें प्रत्येक 5 अंक का है।

32. भूमि के एक बिन्दु से, $300~\mathrm{m}$ ऊँचे टॉवर के शिखर का उन्नयन कोण 30° है। एक समय पर गर्म हवा का एक गुब्बारा (hot air balloon) टॉवर के ठीक ऊपर से गुजरता है। ठीक उसी समय भूमि के उसी बिन्दु से गुब्बारे का उन्नयन कोण 60° है। भूमि से गुब्बारे की ऊँचाई तथा भूमि के बिन्दु से टॉवर की दूरी ज्ञात कीजिये। $(\sqrt{3} = 1.73 \text{ लीजिय})$

5

5

33. (A) यदि किसी त्रिभुज की एक भुजा के समान्तर अन्य दो भुजाओं को भिन्न-भिन्न बिंदुओं पर प्रतिच्छेद करने के लिये एक रेखा खींची जाये तो सिद्ध कीजिये कि ये अन्य दो भुजायें एक ही अनुपात में विभाजित हो जाती हैं।

飂

27. (A) If points A(-5, y), B(2, -2), C(8, 4) and D(x, 5) taken in order, form a parallelogram ABCD, then find the values of x and y. Hence, find lengths of sides of the parallelogram.

3

OR

(B) A(6, -3), B(0, 5) and C(-2, 1) are vertices of \triangle ABC. Points P(3, 1) and Q(2, -1) lie on sides AB and AC respectively. Check whether $\frac{AP}{PB} = \frac{AQ}{QC}$.

3

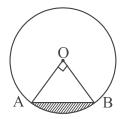
28. Find the zeroes of the polynomial $p(x) = 9x^2 - 6x - 35$ and verify the relationship between zeroes and its coefficients.

29. Prove that $\sqrt{2}$ is an irrational number.

3

3

30. (A) Find the sum of the A.P. 7, $10\frac{1}{2}$, 14, 84.


3

OR

(B) If the sum of first *n* terms of an A.P. is given by $S_n = \frac{n}{2}(2n+8)$. Then, find its first term and common difference. Hence, find its 15th term.

3

31. A chord of a circle of radius 14 cm subtends an angle of 90° at the centre. Find perimeter of shaded region. (Use $\sqrt{2} = 1.41$)

3

SECTION - D

Question Nos. 32 to 35 are long answer questions of 5 marks each.

The angle of elevation of the top of a tower, 300 m high, from a point on the ground is observed as 30°. At an instant a hot air balloon passes vertically above the tower and at that instant its angle of elevation from same point on the ground is 60°. Find height of the balloon from the ground and distance of tower from point of observation. (Use $\sqrt{3} = 1.73$)

5

33. (A) If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points then prove that the other two sides are divided in the same ratio.

5

430/4/3

11 | Page

• • •

अथवा

- (B) △ABC की भुजाओं AB तथा AC पर क्रमशः बिन्दु P तथा Q इस प्रकार स्थित हैं कि PQ || BC है। सिद्ध कीजिये कि माध्यिका AD जो कि बिन्दु A से भुजा BC पर खींची गयी है, रेखाखंड PQ को समद्विभाजित करती है।
- **34.** (A) दिया गया है कि $p^2x^2 + (p^2 q^2)x q^2 = 0$; $(p \neq 0)$
 - (i) दर्शाइये कि उपरोक्त समीकरण का विविक्तकर (D) एक पूर्ण वर्ग है।
 - (ii) समीकरण के मूल ज्ञात कीजिये।

- (B) तीन क्रमागत धनात्मक पूर्णांक इस प्रकार हैं कि सबसे छोटे पूर्णांक का वर्ग एवं बाकी दोनों के गुणनफल का योग 67 है। द्विघात समीकरण की सहायता से तीनों पूर्णांक ज्ञात कीजिये।
- 35. निम्न आँकड़ों का 'माध्य' तथा 'बहुलक' ज्ञात कीजिये :

वर्ग	20-25	25-30	30-35	35-40	40-45	45-50
बारंबारता	9	8	11	13	4	5

खण्ड - ड

प्रश्न संख्या 36 से 38 तक प्रकरण आधारित प्रश्न हैं, जिनमें प्रत्येक 4 अंक का है।

36. गेंदों के पूल (Ball Pool) में खेलना बच्चों के लिये मनोरंजन का अच्छा साधन है। सुहाना ने अपने बच्चों के लिये पूल में भरने के लिये 7 cm व्यास वाली 600 गेंद खरीदीं। 600 गेंद रखने वाले घनाभ आकार के डिब्बे की विमायें 42 cm × 91 cm × 50 cm ($l \times b \times h$) हैं। उपरोक्त सूचना के आधार पर निम्नलिखित प्रश्नों के उत्तर दीजिए:

- (i) एक गेंद का आयतन ज्ञात कीजिए।
- (ii) 10 गेंदों को चमकीले रंगों से रंग किया। रंगीन पृष्ठ का क्षेत्रफल ज्ञात कीजिए।
- (iii) (a) डिब्बे में उपलब्ध रिक्त स्थान का आयतन ज्ञात कीजिये।

अथवा

(iii) (b) गेंदों की सबसे निचली सतह पर गेंदें सटी हुई समान रूप से रखी गयी हैं जो डिब्बे के पूरे आधार क्षेत्र को ढक लेती हैं। (A) एक गेंद द्वारा आच्छादित (covered) क्षेत्र का क्षेत्रफल निकालिये। (B) सबसे निचली सतह पर कितनी गेंदें हैं?

2

1

1

2

5

5

5

5

430/4/3 ^ 12 | P a g e

OR

- **(B)** In a \triangle ABC, P and Q are points on AB and AC respectively such that PQ || BC. Prove that the median AD, drawn from A to BC, bisects PQ.
 - 5

- **34.** (A) It is given that $p^2x^2 + (p^2 q^2)x q^2 = 0$; $(p \ne 0)$
 - Show that the discriminant (D) of above equation is a perfect square.
 - (ii) Find the roots of the equation.

5

- **(B)** Three consecutive positive integers are such that the sum of the square of smallest and product of other two is 67. Find the numbers, using quadratic equation.

5

5

35. Find 'mean' and 'mode' of the following data:

Class	20-25	25-30	30-35	35-40	40-45	45-50
Frequency	9	8	11	13	4	5

SECTION - E

Question Nos. 36 to 38 are case-based questions of 4 marks each.

36. Playing in a ball pool is good entertainment for kids. Suhana bought 600 new balls of diameter 7 cm to fill in the pool for her kids. The cuboidal box containing 600 balls has dimensions $42 \text{ cm} \times 91 \text{ cm} \times 50 \text{ cm} (l \times b \times h).$

> Based on above information, answer the following questions:

Find the volume of one ball. (i)

1

10 balls are painted with neon colours. Determine the area of painted surface.

1

(iii) (a) Find the volume of empty space in the box.

2

OR

The lowermost layer of the balls covers the base of the box edge (iii) (b) to edge when balls are placed evenly adjacent to each other. (A) How much area is covered by one ball? (B) How many balls are there in lowermost layer?

2

Get More Learning Materials Here:

430/4/3

P.T.O.

37. रहीम तथा नदीम दो दोस्त हैं जिनके भूमिखंड एक दूसरे से लगे हुए हैं। रहीम के बेटे ने आवश्यक सूचना के साथ भूमिखंड को आरेखित किया। यह तय किया गया कि रहीम त्रिभुजीय क्षेत्र ABC के किनारे-किनारे तार लगायेगा तथा नदीम भूजा AF, FE तथा BE के किनारे-किनारे तार लगायेगा। आरेख को ध्यानपूर्वक देखिये और निम्नलिखित प्रश्नों के उत्तर दीजिये : $(\sqrt{2} = 1.41 \text{ तथा } \sqrt{3} = 1.73 \text{ लीजिय})$

G D H 40m ^{45°} B 30° BH = 40m HD = 10m DG = 40m GF = 38m FE = 53m

- भुजा BC की लम्बाई ज्ञात कीजिये।
- (ii) भुजा AG की लम्बाई ज्ञात कीजिये।
- (iii) (a) त्रिभुज ABC का परिमाप ज्ञात कीजिये।

- (iii) (b) (AF + FE + EB) की लम्बाई ज्ञात कीजिये।
- 38. एक टेलीकम्यूनिकेशन कम्पनी अपने ग्राहकों के लिये दो योजनाएँ - योजना A तथा योजना B लाती है। दोनों योजनाओं को रैखिक समीकरण द्वारा समझा जा सकता है। यहाँ 't' खरीदे गये समय (मिनट में) को तथा 'C' उसकी कीमत दर्शाता है। समीकरण निम्न प्रकार से हैं:

योजना A : 3C = 20t

योजना B : 3C = 10t + 300

उपरोक्त सूचना के आधार पर निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (i) यदि आप योजना B लेते हैं तो आपको कितनी आरंभिक राशि देनी होगी?
- (ii) चारु ने योजना A खरीदी। उसने ₹ 250 में कितने मिनट खरीदे?
- (iii) (a) कितने मिनट खरीदने पर, दोनों योजनाओं के तहत, समान राशि देनी होगी? वह राशि कितनी होगी?

(iii) (b) कौन-सी योजना बेहतर है, यदि आप 60 मिनट खरीदना चाहते हैं? तर्कसंगत उत्तर दीजिये।

爨

1

1

2

2

1

1

2

Rahim and Nadeem are two 37. friends whose plots are adjacent to each other. Rahim's son made a drawing of the plots with necessary details.

> It is decided that Rahim will fence the triangular plot ABC and Nadeem will fence along the sides AF, FE and BE.

> Observe the diagram carefully answer the following and questions:

(Use
$$\sqrt{2} = 1.41$$
 and $\sqrt{3} = 1.73$)

- Find length BC.
- (ii) Find length AG.
- (iii) (a) Calculate perimeter of $\triangle ABC$.

OR

- (iii) (b) Calculate length of (AF + FE + EB).
- A telecommunication company came up with two plans—plan A and plan B for its customers. The plans are represented by linear equations where 't' represents the time (in minutes) bought and 'C' represents the cost. The equations are:

Plan A: 3C = 20t

Plan B : 3C = 10t + 300

Based on above information, answer the following questions:

- If you purchase plan B, how much initial amount you have to pay?
- (ii) Charu purchased plan A. How many minutes she bought for ₹250?
- At how many minutes, do both the plans charge the same amount? What is that amount?

Which plan is better if you want to buy 60 minutes? Give reason (iii) (b) for your answer.

J_{45°} BH = 40m38m HD = 10m53.58m DG = 40m53m GF = 38mFE = 53mAF = 53.58m

CLICK HERE

鼺

1

1

2

2

1 1

2

. . .

430/4/3 ^ 16 | P a g e

Marking Scheme Strictly Confidential

(For Internal and Restricted use only) Secondary School Examination, 2025

SUBJECT NAME MATHEMATICS (BASIC) (Q.P. CODE 430/4/3)

You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of

_			
Genera	al Inc	tructi	une

1

- the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. 2 "Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, evaluation done and several other aspects. It's leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc. may invite action under various rules of the Board and IPC." 3 Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded. The Marking scheme carries only suggested value points for the answers. 4 These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly. 5 The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer
 - 6 Evaluators will mark (✓) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.

books meant for evaluation shall be given only after ensuring that there is no significant variation in the

- 7 If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
- If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. 8 This may also be followed strictly.
- 9 If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
- 10 No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 11 A full scale of marks (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
- Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and 12 evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
- 13 Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong totaling of marks awarded on an answer.

430/4/3 P.T.O. 1

marking of individual evaluators.

	Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong transfer of marks from the inside pages of the answer book to the title page.
	Wrong question wise totaling on the title page.
	Wrong totaling of marks of the two columns on the title page.
	Wrong grand total.
	Marks in words and figures not tallying/not same.
	Wrong transfer of marks from the answer book to online award list.
	 Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0) Marks.
15	Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

Get More Learning Materials Here:

MARKING SCHEME MATHEMATICS (Basic)

SECTION A

This section has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.

 $20 \times 1 = 20$

- 1. If $\sin A = \frac{2}{3}$, then $\cos A$ is equal to :

 - (a) $\frac{3}{2}$ (b) $\frac{\sqrt{5}}{3}$ (c) $\frac{1}{3}$ (d) $\frac{1}{\sqrt{3}}$

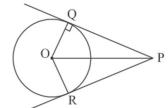
(b) $\frac{\sqrt{5}}{3}$ Ans.:

- The curved surface area of a cone with base radius 7 cm, is 550 cm². The 2. slant height of the cone is:
 - (a) 25 cm
- (b) 14 cm
- (c) 20 cm
- (d) 24 cm

Ans.: (a) 25 cm 1

- The value of m for which lines 14x + my = 20 and -3x + 2y = 16 are 3. parallel, is:
- (a) $-\frac{3}{14}$ (b) $-\frac{7}{3}$ (c) $-\frac{28}{3}$ (d) $-\frac{3}{28}$

(c) $-\frac{28}{3}$ Ans.:


1

- If α , β are zeroes of the polynomial $3x^2 + 14x 5$, then the value of

- (a) $\frac{14}{5}$ (b) $\frac{42}{5}$ (c) $-\frac{14}{5}$ (d) $-\frac{42}{5}$

Ans.:

PQ and PR are tangents to the circle 5. of radius 3 cm and centre O. If length of each tangent is 4 cm, then perimeter of \triangle OQP is:

- (a) 5 cm
- (b) 12 cm
- (c) 9 cm
- (d) 8 cm

Ans.: (b) 12 cm

1

- 6. The LCM of two numbers is 3600. Which of the following can not be their HCF?
 - (a) 600
- (b) 400
- (c) 500
- (d) 150

Ans.: (c) 500

1

- The distance between the points (-6, 9) and (2, 7) is:
 - (a) $2\sqrt{17}$
- (b) $4\sqrt{17}$
- (c) $2\sqrt{5}$
- (d) $2\sqrt{15}$

Ans.: (a) $2\sqrt{17}$

1

- 8. If $\sec \theta - \tan \theta = 2$, then $\sec \theta + \tan \theta$ is equal to :
- (b) $\sqrt{2}$
- (c) $\frac{1}{\sqrt{2}}$
- (d) 2

Ans.: (a)

1

- 9. Three coins are tossed together. The probability that only one coin shows tail, is:

 - (a) $\frac{1}{2}$ (b) $\frac{3}{8}$ (c) $\frac{7}{8}$
- (d) 1

Ans.: (b) $\frac{3}{8}$

1

10. One of the zeroes of the polynomial $p(x) = kx^2 - 9x + 3$ is $\left(-\frac{3}{2}\right)$. The

value of k is:

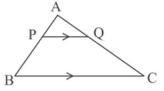
- (b) $-\frac{14}{3}$ (c) $\frac{14}{3}$ (d) $-\frac{22}{3}$

Ans.:

(d) $-\frac{22}{3}$

- 11. Two right circular cylinders of equal volumes have their heights in the ratio 1:2. The ratio of their radii is:
 - $\sqrt{2}:1$
- (b) 1:2
- (c) 1:4
- (d) $1:\sqrt{2}$

Ans.: (a) $\sqrt{2}$: 1

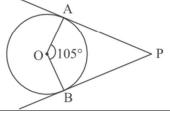

1

- 12. If $\sqrt{2}\sin\theta = 1$, then $\cot\theta \times \csc\theta$ is equal to :

 - (a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{2\sqrt{2}}$ (c) $\sqrt{2}$ (d) $\frac{1}{2}$

Ans.: (c) $\sqrt{2}$

- **13.** In \triangle ABC, PQ || BC. It is given that AP = 2.4 cm, PB = 3.6 cm and BC = 5.4 cm. PQ is equal to :
 - (a) 2.7 cm
- (b) 1.8 cm
- (c) 3.6 cm
- (d) 2.16 cm


Ans.: (d) 2·16 cm

1

14. PA and PB are tangents to a circle with centre O. If $\angle AOB = 105^{\circ}$ then $\angle OAP + \angle APB$ is equal to:

- (b) 175°
- (c) 180°
- (d) 165°

Ans.: (d) 165^0

1

- 15. In an A.P., $a_n a_{n-4} = 32$. Its common difference is :
 - (a) -8
- (b) 8
- (c) 4n
- (d) 4

Ans.: (b) 8

- 16. The perimeter of a quadrant of a circle of radius 7 cm, is:
 - (a) 18 cm
- (b) 11 cm
- (c) 22 cm
- (d) 25 cm

Ans.: (d) 25 cm

- 17. A card is drawn at random from a well shuffled deck of 52 playing cards. The probability that drawn card shows number '9' is:
- (b) $\frac{4}{13}$ (c) $\frac{1}{52}$ (d) $\frac{1}{13}$

Ans.: (d) $\frac{1}{13}$

1

- **18.** The 20^{th} term of the A.P.: $10\sqrt{2}$, $6\sqrt{2}$, $2\sqrt{2}$,.... is:
 - (a) $-76+10\sqrt{2}$ (b) $-62\sqrt{2}$ (c) $-66\sqrt{2}$ (d) $86\sqrt{2}$

Ans.: (c) $-66\sqrt{2}$

1

Directions:

Question numbers 19 and 20 are Assertion and Reason based questions. Two statements are given, one labelled as Assertion (A) and the other is labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below:

- (a) Both, Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- (b) Both, Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of Assertion (A).
- (c) Assertion (A) is true, but Reason (R) is false.
- (d) Assertion (A) is false, but Reason (R) is true.
 - 19. Assertion (A): Median marks of students in a class test is 16. It means half of the class got marks less than 16.

Reason (R): Median divides the distribution in two equal parts.

Ans. (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).

1

20. Assertion (A): If E is an event such that $P(E) = \frac{1}{999}$,

then $P(\bar{E}) = 0.001$.

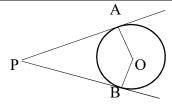
 $P(E) + P(\overline{E}) = 1$ Reason (R):

(d) Assertion (A) is false, but Reason (R) is true. Ans.

1

SECTION B

This section has 5 Very Short Answer (VSA) type questions of 2 marks each.


 $5 \times 2 = 10$

21. (A) Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the centre.

(B) Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

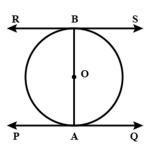
Solution: (A)

Correct figure $\frac{1}{2}$

$$\angle$$
 OAP = \angle OBP = 90° (tangent \perp radius)

 \angle APB + \angle PBO + \angle BOA + \angle OAP = 360°

$$\frac{1}{2}$$


$$\angle APB + \angle AOB = 180^{\circ}$$

$$\frac{1}{2}$$
1

Hence, \angle AOB and \angle APB are supplementary

OR

(B)

Correct

figure $\frac{1}{2}$

Let AB be the diameter of the circle.

therefore
$$\angle OAP = \angle OBR = 90^{\circ}$$
 (tangent \perp radius)

$$\Rightarrow \angle OAP + \angle OBR = 180^{\circ}$$

⇒ Co-interior angles are supplementary

$$\frac{1}{2}$$
 $\frac{1}{2}$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

Hence tangents at the ends of a diameter of a circle are parallel.

430/4/3

7

P.T.O.

22. Find the ratio in which the segment joining the points (2, -5) and (5, 3) is divided by x-axis. Also, find coordinates of the point on x-axis.

Solution:

Let the required ratio be k:1.

Since given line segment is divided by x-axis

therefore
$$\frac{3k-5}{k+1} = 0 \implies k = \frac{5}{3}$$

Hence required ratio is 5:3

$$x = \frac{25+6}{8} = \frac{31}{8}$$

The required point is
$$\left(\frac{31}{8}, 0\right)$$
 $\frac{1}{2}$

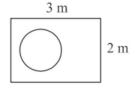
Show that 45^n can not end with the digit 0, n being a natural number. Write the prime number 'a' which on multiplying with 45" makes the product end with the digit 0.


Solution:
$$45^{n} = (3 \times 3)^{n} \times 5^{n}$$

To end with digit 0, 45^{n} should have prime factors 2 and 5 both.

So it cannot end with digit 0.

45ⁿ should be multiplied by
$$2 \Rightarrow a = 2$$


24. The diagonal BD of parallelogram ABCD is divided by segment AE in the ratio 1:2. If BE = 1.8 cm, find the length of AD.

Solution:	Proving \triangle OAD \sim \triangle OEB (By AA similarity criterion)	1
	Therefore $\frac{OB}{OD} = \frac{EB}{AD}$ $\Rightarrow \frac{1}{2} = \frac{1.8}{AD}$	$\frac{1}{2}$
	\Rightarrow AD = 3·6 cm	$\frac{1}{2}$

25. (A) A coin is dropped at random on the rectangular region shown in the figure. What is the probability that it will land inside the circle with radius 0.7 m?

OR

(B) A die is thrown twice. What is the probability that (i) difference between two numbers obtained is 3? (ii) sum of the numbers obtained is 8?

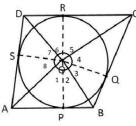
Solution:	(A)	Area of circle = $\frac{22}{7} \times \frac{7}{10} \times \frac{7}{10} = \frac{154}{100}$ sq m	
		, 10 10 100	

Area of rectangle = 6 sq m
$$\frac{1}{2}$$

P(coin lands inside the circle) =
$$\frac{154}{600}$$
 or $\frac{77}{300}$

OR

(B) (i) P(difference between two numbers obtained is 3) =
$$\frac{6}{36}$$
 or $\frac{1}{6}$


(ii) P (sum of numbers obtained is 8) =
$$\frac{5}{36}$$

SECTION - C

Question Nos. 26 to 31 are short answer questions of 3 marks each.

26. Prove that the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Solution:

Correct

figure $\frac{1}{2}$

Proof of $\triangle OAP \cong \triangle OAS$ (by any congruency criterion)

$$\Rightarrow \angle 1 = \angle 8$$
 (cpct)

 \angle AOB + \angle COD = 180°

$$\frac{1}{2}$$

Similarly
$$\angle 4 = \angle 5$$
, $\angle 6 = \angle 7$ and $\angle 2 = \angle 3$

Also
$$\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 + \angle 7 + \angle 8 = 360^{\circ}$$

$$\frac{1}{2}$$

$$\therefore \angle 1 + \angle 2 + \angle 5 + \angle 6 = 180^{\circ}$$

$$\frac{1}{2}$$

27. (A) If points A(-5, y), B(2, -2), C(8, 4) and D(x, 5) taken in order, form a parallelogram ABCD, then find the values of x and y. Hence, find

OR

(B) A(6, -3), B(0, 5) and C(-2, 1) are vertices of \triangle ABC. Points P(3, 1) and Q(2, -1) lie on sides AB and AC respectively. Check whether

Solution: (A) ABCD is a parallelogram

lengths of sides of the parallelogram.

:. Coordinates of mid point of BD = Coordinates of mid point of AC

$$\left(\frac{2+x}{2}, \frac{-2+5}{2}\right) = \left(\frac{8-5}{2}, \frac{4+y}{2}\right)$$

Getting x = 1 and y = -1

$$\frac{1}{2} + \frac{1}{2}$$

$$AB = \sqrt{7^2 + (-1)^2} = \sqrt{50} \text{ or } 5\sqrt{2}$$

$$BC = \sqrt{6^2 + 6^2} = \sqrt{72} \text{ or } 6\sqrt{2}$$

$$\frac{1}{2}$$

 $\overline{2}$

OR

$$\frac{1}{2}$$

 $AP = \sqrt{3^2 + (-4)^2} = 5$ (B)

$PB = \sqrt{3^2 + (-4)^2} = 5$	1/2
$AQ = \sqrt{4^2 + (-2)^2} = 2\sqrt{5}$	<u>1</u>
$QC = \sqrt{4^2 + (-2)^2} = 2\sqrt{5}$	2
	$\overline{2}$
So $\frac{AP}{PB} = 1$ and $\frac{AQ}{QC} = 1$	1
Therefore $\frac{AP}{PB} = \frac{AQ}{QC}$	

28. Find the zeroes of the polynomial $p(x) = 9x^2 - 6x - 35$ and verify the relationship between zeroes and its coefficients.

Solution:
$$p(x) = 9x^2 - 6x - 35 = (3x - 7)(3x + 5)$$

Zeroes of $p(x)$ are $\frac{7}{3}$ and $\frac{-5}{3}$

Sum of zeroes $= \frac{7}{3} - \frac{5}{3} = \frac{2}{3} = \frac{-(-6)}{9} = \frac{-coefficient\ of\ x}{coefficient\ of\ x^2}$

Product of zeroes $= \frac{7}{3} \times \frac{-5}{3} = \frac{-35}{9} = \frac{constant\ term}{coefficient\ of\ x^2}$

29. Prove that $\sqrt{2}$ is an irrational number.

Solution: (a) Let
$$\sqrt{2}$$
 be a rational number such that
$$\sqrt{2} = \frac{p}{q} \text{ (p and q are co-prime numbers, } q \neq 0)$$

$$\sqrt{2} = \frac{p}{q} \text{ (p and q are co-prime numbers, } q \neq 0)$$

$$\sqrt{2} = \frac{p}{q} \Rightarrow 2q^2 = p^2$$

$$2 \text{ divides } p^2 \Rightarrow 2 \text{ divides p as well}$$

$$p = 2m \text{ (for some integer m)}$$

$$2q^2 = 4m^2 \Rightarrow q^2 = 2m^2$$

$$2 \text{ divides } q^2 \Rightarrow 2 \text{ divides q as well}$$

$$p \text{ and q have a common factor 2 which is a contradiction as p and q are co-prime.}$$

430/4/3

11

P.T.O.

 $\frac{1}{2}$

30. (A) Find the sum of the A.P. 7, $10\frac{1}{2}$, 14, 84.

OR

(B) If the sum of first *n* terms of an A.P. is given by $S_n = \frac{n}{2}(2n+8)$. Then, find its first term and common difference. Hence, find its 15th term.

Solution:

(A)
$$a = 7$$
, $d = \frac{21}{2} - 7 = \frac{7}{2}$

$$84 = 7 + (n-1) \times \frac{7}{2} \implies n = 23$$

$$S_{23} = \frac{23}{2}(7 + 84) = \frac{2093}{2}$$

OR

(B)
$$S_1 = a = 5$$

$$S_2 = 12$$

Therefore d = 2

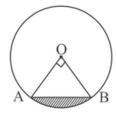
Hence
$$a_{15} = 33$$

1

1

1

 $\frac{1}{2}$


 $\frac{\overline{2}}{1}$

1

_

1

31. A chord of a circle of radius 14 cm subtends an angle of 90° at the centre. Find perimeter of shaded region. (Use $\sqrt{2} = 1.41$)

Solution: In \triangle AOB, AB = $\sqrt{14^2 + 14^2} = 14 \times 1.41 = 19.74$ cm

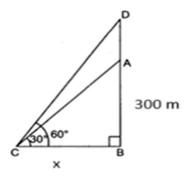
Length of the arc AB = $\frac{90}{360} \times 2 \times \frac{22}{7} \times 14 = 22$ cm

1

1

Perimeter of shaded region = 41.74 cm

1


430/4/3

SECTION - D

Question Nos. 32 to 35 are long answer questions of 5 marks each.

The angle of elevation of the top of a tower, 300 m high, from a point on the ground is observed as 30°. At an instant a hot air balloon passes vertically above the tower and at that instant its angle of elevation from same point on the ground is 60°. Find height of the balloon from the ground and distance of tower from point of observation. (Use $\sqrt{3} = 1.73$)

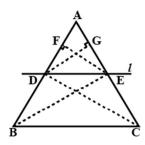
Solution:

Correct figure 1

Let AB be the tower, D be the position of balloon and x be the distance of tower from the point of observation.

In
$$\triangle$$
 ABC, $\tan 30^{\circ} = \frac{300}{x}$ $\Rightarrow x = 300\sqrt{3}$ $\Rightarrow x = 519$ In \triangle DBC, $\tan 60^{\circ} = \frac{DB}{x}$ \Rightarrow DB = $x\sqrt{3}$ \Rightarrow DB = 897.87

The distance of the tower from the point of observation is 519 m And height of the balloon from the ground is 897.87 m


33. (A) If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points then prove that the other two sides are divided in the same ratio.

OR

(B) In a \triangle ABC, P and Q are points on AB and AC respectively such that PQ || BC. Prove that the median AD, drawn from A to BC, bisects PQ.

430/4/3

Solution: (A)

Correct

figure $\frac{1}{2}$

1

1

1

Given: In \triangle ABC, DE || BC

To Prove:
$$\frac{AD}{DB} = \frac{AE}{EC}$$

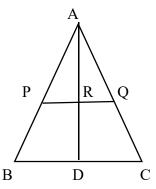
Construction: Join BE, DC, Draw DG \perp AC and EF \perp AB

Proof:
$$\frac{ar(\Delta ADE)}{ar(\Delta BD)} = \frac{\frac{1}{2} \times AD \times EF}{\frac{1}{2} \times DB \times EF} \implies \frac{ar(\Delta ADE)}{ar(\Delta BDE)} = \frac{AD}{DB}$$
(i)

and
$$\frac{ar(\Delta ADE)}{ar(\Delta CED)} = \frac{\frac{1}{2} \times AE \times DG}{\frac{1}{2} \times EC \times DG}$$
 \Rightarrow $\frac{ar(\Delta ADE)}{ar(\Delta CED)} = \frac{AE}{EC}$ (ii)

As $\triangle BDE$ and $\triangle CED$ are on the same base DE and between the same parallels DE and BC.

$$\therefore$$
 ar(\triangle BDE) = ar(\triangle CED)(iii)


From (i), (ii) and (iii), we get
$$\frac{AD}{DB} = \frac{AE}{EC}$$

OR

1

 $\frac{1}{2}$

(B)

Correct

figure $\frac{1}{2}$

Let AD intersect PQ at point R.

Given
$$PQ \parallel BC \Rightarrow PR \parallel BD$$

Therefore in \triangle ARP and \triangle ADB, \angle PAR = \angle BAD

and $\angle APR = \angle ABD$	
∴ Δ ARP ~ Δ ADB (By AA similarity criterion)	1
$\Rightarrow \frac{AR}{AD} = \frac{PR}{BD} \qquad (i)$	$\frac{1}{2}$
Similarly \triangle ARQ \sim \triangle ADC	
$\Rightarrow \frac{AR}{AD} = \frac{RQ}{DC} \qquad (ii)$	1
Using (i) and (ii) $\frac{PR}{BD} = \frac{RQ}{DC}$	$\frac{1}{2}$
AD is the median \therefore BD = DC \Rightarrow PR = RQ	1
i.e. AD bisects PQ	$\frac{1}{2}$
34. (A) It is given that $p^2x^2 + (p^2 - q^2)x - q^2 = 0$; $(p \ne 0)$	

- (A) It is given that $p^2x^2 + (p^2 q^2)x q^2 = 0$; $(p \ne 0)$
 - Show that the discriminant (D) of above equation is a perfect square.
 - (ii) Find the roots of the equation.

OR

(B) Three consecutive positive integers are such that the sum of the square of smallest and product of other two is 67. Find the numbers, using

quadratic equation.	
Solution: (A) (i) Discriminant = $(p^2 - q^2)^2 + 4p^2q^2$	1
$=(p^2+q^2)^2$	1
(ii) $\therefore x = \frac{-(p^2 - q^2) \pm \sqrt{(p^2 + q^2)^2}}{2p^2}$	1
$=\frac{q^2}{p^2},-1$	1+ 1
OR	
(B) Let the three consecutive positive integers be x , $x + 1$ and $x + 2$	1
A.T.Q. $x^2 + (x+1)(x+2) = 67$	1

430/4/3

15

P.T.O.

$\Rightarrow 2x^2 + 3x - 65 = 0$	1
$\Rightarrow (2x+13)(x-5)=0$	
\Rightarrow x = 5,	1
$x = \frac{-13}{2} \text{ (rejected)}$	
So the three consecutive positive integers are 5, 6 and 7	1

35. Find 'mean' and 'mode' of the following data:

Class	20-25	25-30	30-35	35-40	40-45	45-50
Frequency	9	8	11	13	4	5

Solution:

Class	Xi	f_i	$u_i = \frac{x - 32.5}{5}$	f _i u _i
20 - 25	22.5	9	-2	- 18
25 - 30	27.5	8	– 1	- 8
30 - 35	32.5	11	0	0
35 - 40	37.5	13	1	13
40 - 45	42.5	4	2	8
45 - 50	47.5	5	3	15
		$\sum f_i = 50$		$\sum f_i u_i = 10$

Mean =
$$32.5 + \frac{10}{50} \times 5$$

= 33.5

Mode =
$$35 + \frac{13 - 11}{26 - 11 - 4} \times 5$$

= 35.91

Correct table

1

SECTION - E

Modal class is 35 - 40

Question Nos. 36 to 38 are case-based questions of 4 marks each.

430/4/3

36. Playing in a ball pool is good entertainment for kids. Suhana bought 600 new balls of diameter 7 cm to fill in the pool for her kids. The cuboidal box containing 600 balls has dimensions $42 \text{ cm} \times 91 \text{ cm} \times 50 \text{ cm} (l \times b \times h)$.

NAMAS.

Based on above information, answer the following questions:

- (i) Find the volume of one ball.
- 10 balls are painted with neon colours. Determine the area of painted surface.
- (iii) (a) Find the volume of empty space in the box.

OR

(iii) (b) The lowermost layer of the balls covers the base of the box edge to edge when balls are placed evenly adjacent to each other.(A) How much area is covered by one ball? (B) How many balls are there in lowermost layer?

Solution: (i) Volume of one ball = $\frac{4}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2} = \frac{539}{3}$ or 179.67 cu. cm	1	
(ii) Area of painted surface = $10 \times 4 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} = 1540$ sq. cm	1	
(iii) (a) Volume of box = $42 \times 91 \times 50 = 191100$ cu. cm		
Volume of 600 balls = $600 \times \frac{539}{3} = 107800$ cu. cm	$\frac{1}{2}$	
Volume of empty space = $191100 - 107800 = 83300$ cu. cm		
OR		
(iii) (b) (A) Area covered by one ball = $7 \times 7 = 49$ sq. cm	1	
(B) Number of balls in lowermost layer = 78	1	
	1	

430/4/3

P.T.O.

37. Rahim and Nadeem are two friends whose plots adjacent to each other. Rahim's son made a drawing of the plots with necessary details.

> It is decided that Rahim will fence the triangular plot ABC and Nadeem will fence along the sides AF, FE and BE.

> Observe the diagram carefully answer the following and questions:

(Use
$$\sqrt{2} = 1.41$$
 and $\sqrt{3} = 1.73$)

- (i) Find length BC.
- (ii) Find length AG.
- (iii) (a) Calculate perimeter of $\triangle ABC$.

OR

(iii) (b) Calculate length of (AF + FE + EB).

Solution: (i)
$$\cos 45^{\circ} = \frac{50}{BC} \implies BC = 50 \times 1.41 = 70.5 \text{ m}$$


(ii)
$$\tan 45^\circ = \frac{38}{AG} \implies AG = 38 \text{ m}$$

(iii) (a)
$$\sin 60^{\circ} = \frac{78}{AC} \implies AC = 89.96 \text{ m}$$

Perimeter of $\triangle ABC = 70.5 + 89.96 + 38 + 50 + 40 = 288.46 \text{ m}$

(b)
$$\cos 30^\circ = \frac{40}{BE} \Rightarrow BE = 46.13 \text{ m}$$

AF + FE + EB = 53.58 + 53 + 46.13 = 152.71 m

430/4/3

1

1

1

1

1

38. A telecommunication company came up with two plans—plan A and plan B for its customers. The plans are represented by linear equations where 't' represents the time (in minutes) bought and 'C' represents the cost. The equations are:

Plan A: 3C = 20t

Plan B: 3C = 10t + 300

Based on above information, answer the following questions:

- (i) If you purchase plan B, how much initial amount you have to pay?
- (ii) Charu purchased plan A. How many minutes she bought for ₹250?
- (iii) (a) At how many minutes, do both the plans charge the same amount? What is that amount?

OR

(iii) (b) Which plan is better if you want to buy 60 minutes? Give reason for your answer.

Solution: (i) At $t = 0$, $3C = 300 \Rightarrow C = 100$	1
₹100 have to be paid initially.	
(ii) $3 \times 250 = 20t \implies t = 37.5 \text{ minutes}$	1
(iii) (a) $20t = 10t + 300 \implies t = 30$	1
Both plans charge same amount if a person buys 30 minutes.	
$Amount = \frac{20 \times 30}{3} = ₹200$	
OR	
(iii) (b) At $t = 60$, cost under plan $A = 300$	
At t = 60, cost under plan B = ₹ 300	
Plan B is better as ₹ 100 are saved.	

430/4/3

P.T.O.

